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NUMERICAL SIMULATION OF TOKAMAK ELECTRON DYNAMICS

I. Introduction - Problems of Interest and History

Tokamak operation depends critically upon the physics of the electrons.

The electrons transport energy, in a way still called "anomalous" after a

decade of study. They determine radiation energy loss, they carry the

current required for magnetohydrodynamic stability. In the absence of

collisions, the dynamics of electrons trapped in local magnetic mirrors is

qualitatively different from the dynamics of untrapped electrons. Electric

fields and collisions then give rise to complex transport processes. In

particular, an electric field parallel to the magnetic field leads to a

parallel current density. For sufficiently strong electric fields, this

current cannot be characterized by a quasi-steady parallel conductivity,

a. This is because the runaway electrons, which arise from the decrease

of the Rutherford cross section (with increasing energy), make the conduc-

tivity depend explicity on time.

The theoretical determination of a began with the seminal work of

Chapman and Cowling, and was reined by Spitzer, et al. 2 Hinton and

Oberman 3 first pointed out the non-local relationship between current den-

sity and electric field in toroidal systems where the mean free path is

comparable with or larger than the geometric lengths. The more recent

developments are summarized by Hazeltine, et al., 4 but all the works

discussed there neglect runaway electrons.

The theory of runaway electrons was initiated by Dreicer 5 and they

were first observed in toroidal geometry by W. Bernstein, et al.6 Further

analytic studies were carried out by Kruskal and I. B. Bernstein, 7

Gurevitch, 8 and Lebedev. 9 References 7-9 were complex multiple domain

asymptotic analyses, the validity of which was confirmed by the numerical

work of Killeen10 and Kulsrud. None of the aforementioned studies

included trapped electrons.

Qualitatively, runaway behavior in even relatively weak parallel elec-

tric fields becomes important for electrons of energy a few times the thermal

energy or greater. The understanding of this domain of energies was

Manueapt submitted March 11, 1981.
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dramatically altered when Coppi12 first described what he termed a "slideaway"

distribution. The first associated numerical calculations were carried out

by Hui.1 3 The implications of the results as regards stability were discussed

by Papadopoulos and the resultant quasilinear diffusion further examined by

Hui. 15 The application of this model to resistivity in tokamaks was presented

by Winsor.16 Elaborate numerical solutions of a model Fokker-Planck equation

for times of the order of an electron-electron collision time were given by

Pozolli, et al.
1 7

This paper is an extension of the prior work on runaways. It is not

concerned with toroidal effects and crossed field transport, but concentrates

on phenomena associated with the parallel electric field. The model adopted

is that of a very strong magnetic field with closed lines of force along

which the magnetic field strength varies, and with an externally applied

electric field parallel to it. The electrons are described by the guiding

center kinetic equation with collisions represented for simplicity by the

Lorentz form appropriate to electrons colliding with infinitely massive ions.

This equation is presented in section II where it is written in terms of

energy, magnetic moment, position on the line of force in question and time.

The period of the collision-free motion of a representative electron is much

less than a representative collision time. This permits reduction of the

problem to consideration of a system of three bounce-averaged kinetic equa-

tions, one for trapped electrons, one for circulating electrons moving parallel

to the electric field, and one for circulating electrons moving antiparallel

to the electric field. The boundary conditions linking the equations are given.

The details of the coefficients for a particular choice of magnetic field

strength are presented in section III. A transformation of independent vari-

ables which maps the problem into a domain with rectangular boundaries is

given in section IV. This lends itself to fast accurate numerical solution.

The results are discussed in section V. The details of the numerical method

and the calculation of the quasi-static solution are presented in Appendices

A and B.

2
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11. Kinetic Equation - Transformation to New Variables and Boundary Conditions

The guiding center distribution function f(r, v; t) for electrons

in a magnetic field is governed by the kinetic 
equation 18

f + f + K (w f  _ af n B e b -E f  = f 1  (1)
Tt as 2 au 9t'a Wa at

Here B = VixVx and E are the magnetic and electric field vectors and b = B/IBI•
In terms of the velocity v one has u = b , v and w = Ib_ x vl, S measures are

length along B, and f = f(*, X, s, u, w, t) where * and X are flux coordinates

which label a line of force. For simplicity we neglect self collisions

amongst the electrons and represent the collision term by the Lorentz collision
2

operator

Of 2Tne 4 Z v inA, V I_
Ftc A _v - yV f) (2)

= $ I (1 ] (

which accounts accurately for small angle collisions of electrons with

ions and approximately for electron-electron collisions. For electrons

of speeds much greater than the rms speed, Eq. (2) is also a good repre-

sentation of electron-electron collisions. Here e, m and n are the

electron charge, mass and number density, Ze is the charge of the single

species of ion assumed to be present, &z A is the usual Coulomb
2

logarithm, 2 = u/v is the cosine of the pitch angle and the collision

frequency is

4TT ne 4 z i A (4)

A transformation to energy and magnetic moment as the independent

variables simplifies Eq. (1). To see this, define

H * mv2 =  m(u 2 + w2) (5)

B . (6)

Then

X = (1 - ,B/H)i  (7)

3
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and Eq. (1) is carried into

1 f + f a 2vm M f
u a- as - ai i- -uj). (8)

where now u - + [H-B]. Further analysis of this equation requires some

knowledge of the orders of magnitude of its terms and of the magnetic geometry.

In order to model the electron dynamics in a tokamak, a magnetic geometry

with closed lines of force is chosen which has a periodic variation in the field

strength along the line of force. One period of the magnetic field is shown

in Fig. 1. When collisions are negligible and b - E is zero, an electron

with given energy H and magnetic moment P moves on an orbit in the (u,s) phase

plane as indicated schematically in Fig. 2. Note that when H < p B themax

electron is trapped between maxima in the effective potential * - UB but when

H > U B the electron passes over the peak in the effective potential, the
max

sign of u never changes, and the electron is said to be untrapped or circulating.

One can associate with each orbit a quantity

L

---i (untrapped electron)

-L
2

f0 do (trapped electron ) (9)

-11 lul

For a trapped electron T is one-half the conventional period; for an untrapped

electron T is the time required for an electron to move through one space period

of B. Note that as H - uB the characteristic time T u - tnIH - 4B .-.
max 3 5 I

We are concerned with situations where, for almost all values H and u and

for almost all electrons,

a [ es n fl
SM IT at ' 1 IVT << 1 (10)

This Inequality lirplies that the distribution fumction changes in a time, deter-

mined by collisions, which is much longer than a representative period

time. Let us make order of magnitude estimates of the various terms in Eq. (8).
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We expect smoothly-varying solutions which behave in order of magnitude

like

L 8f af
ua aF-t

L f(12)

ebEL af eEL f (13)

e • _ 1 H

and

a 2m f f (14)

We seek a solution of the form

f - f + f + f +. . . (15)0 1 2

where in order of magnitude jfm+1/fm I -. Then on inserting Eq. (15) in

Eq. (8) and equating like powers of c,

afIo
as 0 (16)

1 f ao a a avm __

i 3t + e 0 ~ (17)

Equation (16) requires that f be independent of s; e.g., fo M f (H' 't)-

Henceforth we shall suppress explicit indication of * and X. Thus if Eq. (17) is

integrated one period around an orbit there results

af af af
- e b " E ds o 2vm ds do (18)at u alH au -p B - ud . (8

The first integral on the left in (18) is T. We choose the paths of integration

as in (9) for the remaining integrals. The reason for our choice now becomes

clear. The integral

D 1 2 mu ds (19)

is now continuous across the separatrix.

7
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The annihilation of the f term in Eq. (17) was accomplished by1
integrating around a period for untrapped electrons (assuming

periodicity of fl), and around a closed orbit for trapDed

electrons. For untrapped electrons, the integral of the electric field

term has a sign which depends on whether u • E is positive or negative:

for trapped electrons, the corresponding integral vanishes.

Then Eq. (18) implies

+ + a+
af af +f

T 0_ A [ D (20)
at aH au a0

af af af
7- D -(21)

at a 1a L ail
aft a ) [ V - - (22)

and

wee A-I e I ds b El. (23)

where f denotes the distribution function of the trapped electrons, and

f- that of the untrapped electrons, the ± being taken according as

sgn u = ± sgn b - E. These three parts of the electron distribution are

indicated in Figs. 1 and 3. On the separatrix, or better said on adjacent

points on the side of the item boundary layer straddling the separatrix

in which t - c

f+ = f- = f* (24)

In addition f must be regular at all the natural singular points of

the differential equations. As one approaches the separatrix, where the

bounce average which is used to derive Equations (20) - (22) fails, one

can invoke conservation of flux across the separatrix to provide the

required condition. The details are given in Appendix A.

8



H =LBmin

(TRAPPED)

(EXCLUDED) f
H =1Bmax

(CIRCULATING)
f+I f-

H
Fig. 3 - Diagram in magnetic moment versus energy space sLaOwing the

location of trapped and passing electrons.
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III. A Magnetic Field Geometry

The transport coefficients T, A and D may be calculated when the

magnetic field is known as a function of space. For simplicity, we

shall assume the sinusoidal form

B(s) = Bm I + 8 [ - cos (s)]}

=Bmin + 26 sin2 (2 )} (25)

where 8B max - Bmin (26)
8 = 2Bi)

2 Bml

This magnetic field behavior is depicted in Fig. I. As indicated in Fig. 2,

the parallel electron velocity varies with this magnetic field

u(s) 1- CH - pB(s)11'

For trapped eler tons, u vanishes at the turning point, *So, where

L H'I.Bi n
So =j arcsin (  innBmn ) (27)

Now let us define

I L/2, H > pBmax

Smax S H Bmax  (28)

Then in (H, p) coordinates

TTS
max

T 2L 7=2 "'Bmi
[l~' [ - sin2 8] dO (29)

SL221 b E dsI, H > P B
a - -

0 H :9 p B1 x  (30)

' " ...... .. . . ..| I .. . ... ' ; ".... .. .. ... ...



and rr5 m x l ' mi i

D= lfL1t4L(HPB S1  min d8m(1
7'B m min' 1 1+ 28 ine d.(minm o

Performing the 0 integrations in Equations (29) and(31) and employing the

superscript notation introduced in Section II, the transport coefficients

may be expressed by

T kK(k) H > p. B~

T [ =K(lk) H :9P B mx(32)

where

LL (3)

TT (6.tB
m min

1k = H-tB~ miJ(4

and K(k) is the complete elliptic integral of the first kind defined by 
1 9

17

K(k) = ~ dG (1-k2sin2 g)- (35)

L
and 

f
2 e10 EdsH> max (36)

L 0 H p ma

and

D =- E(k) H > IiBm
k

D D - OEIE(l/k) -(1-1/k
2 )K(l/k)1 H :9 p B~(7



vhere

-8L (m 1 (8S 1 B (38)
mini

and E(k) is a complete elliptic integral of the second kind defined 
by19

E(k) E' dO(l-k2sin2e) . (39)
0

For convenience, the e variation in the denominator of the integral in

Equation (31) was neglected, and therefore the expression in Equation (37)

is an upper bound for the diffusion coefficient.

1
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IV. Reduction to the Unit Square - Second Transform and Comments on Computability

The equation for the averaged distribution function, f, is in its

simplest form in Eq. (18). In velocity space, it consists of purely

convective "flow" in the H-direction plus purely diffusive motion in the

p-direction. This would be easy to solve either numerically or computa-

tionally, except for the boundary and matching conditions.

Extensive numerical studies have been performed on a close relative of (13),

the Fokker-Planck Equation. 3,5,11,20 References 5 and 11 have not included the

magnetic trapping effects, but have required special treatment near H - 0

and H = m. References 3 and 20 have included trapped-electron effects, and

require special treatment on the separatrix. Much of this difficulty can

be removed by choosing a compact coordinate system (the unit square) in

which the separatrix is parallel to one of the coordinate boundaries.

This transformation may be chosen for computational convenience from

the rational functions. Consider the variables

Z-1

and x zjH 
(40)

H H
y = +H40o

where
H (42)zf -']smin  (.'

Here a and H are constants which will be chosen later to scale the
o

coordinate system for problems of interest.

Equations (21-23) when transformed assume the conservative form

Ft-~ ~ ~ ~ - 1 yJ6 b H0
IT~,A + I b Db2fo (3

where f represents fe, f- or f with the appropriate definitions of
0 0 0 0

TP and D given in Section III.

13



ax 1 1-X (l-x) (l+ax) (44)
aH H y l+a

0

ax Bm- n 1-Y (l+ax)2  (45)
a H y l+a0

1Y = - (l-y) 2  
(46)3H H

0

and the Jacobian is

Bmi (_ly)3 (l+ax)2 (47)
H 2 y 1+a0

The separatrix is now along the coordinate line
B -

Smax Bmn (48)
s Bmax  aBmin

The cost of this simplification is a convection term with derivatives in both
coordinates.

The numerical analysis of Eq. (43) is now elementary. The convection

and diffusion operations can be performed on a Cartesian (x,y) grid with

conventional methods. 10 The functions f + and f - differ above the+0 0

separatrix, and are the same (i.e., f+ - f = f*) below it, and are

continuous on it. The boundary conditions are

af o/y = 0 (49)

at x = 0 and x - 1, and

af 0 aX = 0 (50)

at y - 0 and y - 1.

And the flux conservation conditioning

D (x afo

continuous on x - x . If desired, the conservation condition can be relaxed,

and an asymptotic form can be prescribed at y - 1.

This form of the model is now easy to apply to physical problems.

The next sections present some applications. Appendix A describes the

details of the numerical methods.

14



V. Conclusions

Figure 4 shows the electron distribution function, fe for three values

of the applied electric field at the same final time. The curves are lines of

constant f and the difference between each contour is

Af e  exp [n f e(max) -&n f e(min)/(Nc +1)3 where N is the total number of

contours. For case (a), the applied electric field is so weak, E/ED << 1, that

the departure of the electron distribution function from a Maxwellian is not

discernable in the graph, i.e., lines of constant f e are semicircles. In case

(b), the applied electric field is larger and the departure from Maxwellian,

though small, is row evident in the plot. Finally, in case (c), the electric

field has generated a large high energy tail on the distribution function and

the level curves are markedly distorted from semicircles.

Figures 5 and 6 display the electron distribution function as a

function of the parallel and perpendicular velocities respectively, i.e.,
f e(v) and fe (v ). Por the small electric field case, the distribution func-

Ie

tions remain essentially Maxwellian with equal parallel and perpendicular temper-

atures (the initial condition). For the case of the large electric field,

fe kva) is highly asymmetric and the increase in the perpendicular temperature

is attributable to pitch-angle scattering.

Figure 7 shows the variation of the plasma resistivity, n, defined as

the ratio of the current density to the parallel electric field, as a function

of time for two values of the applied electric field. Each curve exhibits

two different types of behavior. The first is a very rapid response to the

electric field which is shown by the sharp decrease in the plasma resistivity.

However, as the distribution distorts from the initial Maxwellian, the pitch-

angle diffusion becomes important and a second regime is reached with a much

15
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more slowly varying resistivity. The departure from a constant resistivity

is attributed to the runaway electrons and can be seen to be present

even for the small electric field case, though it sets in at ever later

times as the electric fie±d decreases.

Figures 8 and 9 display the results of varying the number of trapped

particles. Figure 8 shows the electron distribution function for three

values of 6 = (E = a/R) at the same final time for the same applied electric

field. The variation in the number of trapped particles is shown by the size

of the angle subtended by the two dashed lines representing the position of

the separatrix. The time evolution of the plasma resistivity corresponding

to these cases are shown in Fig. 9. The important point to note here is the

increase in the resistivity due to the decrease in the available current

carriers, i.e., trapped particles cannot contribute to the plasma current.

Finally, Fig. 10, shows the time evolution of the plasma resistivity

for three different initial electron distribution functions. The solid line

represents the resistivity resulting from an initially Maxwellian distribution.

The dashed line represents the resistivity when the initial distribution was

that calculated in Appendix B and corresponds to the counterpart of the

Spitzer-Harm calculation for the case of trapped particles. The ratio of the

two asymptotic values was found to be approximately 5/3. When this factor

was included, and it is believed to be a numerical error in the code, the

result was the dotted line. The initial transient is believed to be

associated with finite grid size effects. This shows that the Maxwellian

plus the first order correction yield a much better approximation to the

asmyptotic distribution than the Maxwellian alone.

20



F (v,,. v.l,

b)

SEPARATRIX V SEPPRATRIX
% I

, I

I

VT V11

b)

5EPARATRIX V SEPPRATRIX

% J

% I

% I

VT 

v 1

Fig. 8 Velocity space plots of the electron distribution function forthree values of 6; a) 6 =.100, b) 6 - .175 and c) 6 =.250

21

all



7.0

S.250

a .175.



10.0

8.0

6.0 Met0h~AX

4 .0 
0 f e

2.0 1 1 1 1 1 1 1
0 10 20 30 40 50

t Pr

Fig. 10 - The resistivity as a function of time for three

different initial distribution functions



In summary, these results confirm the intuitive notions that trapped

particle populations inhibit conduction, that the Dreicer field roughly

separates situations of approximate quasi-static solutions from those of

well developed runaway, and that a Spitzer-Harm type of solution is a good

approximation for suitably short times in the weak field case.
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Appendix A - Details of the Numerical Methods

Equation (28) with the prescribed boundary values and suitable

initial data constitutes an initial-value problem for the averaged

electron distribution function F(x,y). This section describes the

resulting implicit difference equations, and an algorithm for their

solution.

Equation (28) has the form

-- (AG ) + [B G + CG (Al)

Thus ".1 (G++G'+G*)dxdy changes only if the boundary conditions allow a

flux through the boundary. This property will be preserved in the numeri-

cal algorithm. It can most easily be done if the x and y derivatives in

Eq. (Al) are replaced by centered differences.

Let the boundaries of the Cartesian grid be x = I/N IfO..N and

y = J/Ny, J = O..N . Then the change in G within a grid cell is

by
- G (1-4, J = - [p (1+1, J4) - P (I, J4)] + [ Q (I+, j+1)

-Q ('4, J)] (A2)

in terms of the fluxes through the cell boundaries

P (I, J4) = ' 1 [C(I4, J4) G (I+, J4) + C(I-i, J+) G (I-, J)]

+ 1 [B(l4j, 34) G (IJ, J-4) - B(I-4, 34J) G (14*, Jj)

+ B(I-, J+) G (I4, J4) - B(I+4, J+) G ('-2, J4)]) (A3)

and

Q (1-4, J) - KA(I4, J) G (14, J4) + A(Iq, J-4) 0 I+, J-4 )1

(A)

These expressions apply on the interior boundaries of all cells. On the

edges of the unit square, the fluxes are zero. On the separatrix, the two

25
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fluxes, P+ and P, both represent transport from the density in the

adjacent trapped electron cell, while they add separately to their

respective untrapped-electron densities.

The separatrix is most conveniently treated by choosing a ii Eq. (10)

so that it lies on a grid boundary. In particular, for a physics problem

in which both trapped and untrapped electrons are important, and there are

no external sources of electrons at some particular energy, the most natural

choice of the adjustable grid parameters is

B
a max -2 (A5)

Brmin

and

H = kT, (A6)

where T is a representative temperature of interest; e.g., the anticipated

thermal electron temperature of the plasma. Cases with Bmax <2Bmin cause

no problem, since a appears in Eqs. (25-32) only in the combinations (l+a)

and (l+ax). Thus, no poles or zeros are introduced in the unit square

provided a > -1.

It remains to specify the time difference formulation of Eqs. (A2-A4).

It can be most compactly stated in terms of Eq. (Al). A convenient general

form is

1 CG (t+l) -G (t)] = (l-s) A- LAG (t)] + (l-s) [B G (t) +CG (t)]

b b bG (t+l)

+ s L LAG (t+l)] + s 6 LB t ) +CG (t+l)] (A)

where G (t+l) represents evaluation of G at time t + 6t. Here s 1 I is an

explicit algorithm, s - 0 is fully implicit, and s - 0.5 is an implicit

algorithm which is second-order accurate in time.

Suppose the parameters in Eqs. (A5, A6) are used. Then G consists of

N xN elements, of which J NxNY represent G+, * NN represent G', and

NxNy represent G*. A grid of this type is shown in Fig. 11. Treating all

these elements as a column vector, Eq. (A7) with the space differences expanded

according to Eqs. (A2-A4), leads to a matrix equation of the form
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NY 
SEPARATRIX

*~~ 6

i+2

+ - j+ i 1+/ V21 /

* 0 0 0 0 0 *

0 1-1 I i+1 i+2 NX
Fig. 11 -Finite difference representation of the problem domain
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1 -sn ) G (t+l)- T + (1-s) I )G (t). (AS)

Here L is the space-difference operator and I is the identity matrix.

Now the right-hand side can be explicitly calculated, and the left-hand

side can be solved by any conventional sparse-matrix equation solver.

This is all that is needed to advance the solution of Eq. (13) in time,

and the distribution function can be calculated from it by retracing the

coordinate transformations.
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Appendix B - First Order Correction to the Electron Distribution 
Function

We desire a quasi-steady solution of Eqs. (20-22) for which the collision

term is formally dominant. Seeking a solution of the form given in equation 15

we find the first order equations to be

S[D 2- where BI=+ - *E

The solution of Eq. (iB) satisfying reaularity at U = 0 and vanishing at

inifinity is

0 0f()

The next order equations can be written

3H2

and

D 0B3

For trapped electrons the solution is again

f = fl (H)

and can be absorbed into f 0 For circulating electrons, Eq. (2A) may be

integrated to obtain

29



Since D vanishes as u + 0 the constant of integration must be zero. A further

integration yields

f± = 0 + c B5
1 f D(-')

In order to make f continuous on the separatrix the constant of integration is

absorbed into the integral form by writing it as a definite integral, i.e.,

H/BMAX

0 
B6

1

Finally we have
HIP MAX

f f (H)+A f di' B7

af H/BMXx
af(H) d MX

f(-oH)- - -f A B80 H D( ')

f fo(H) , B9

and we have taken f (H) f-(H) = f (H) to be Maxwellian.
0 0 0
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